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Abstract  

To do with the ARCH effects in explanatory variables, a new time-varying parameter 

regression is developed. The autoregressive conditional parameter (ACP) model with 

heteroskedastic regressors extends the ACP model of Lu and Wang (2016) by allowing 

explanatory variables to follow a multivariate GARCH process. The model is applied to 

examine time-varying causal effects of the daily United States (US) dollar exchange rate and 

S&P 500 stock index on WTI crude oil price. The empirical results show that the developed 

model outperforms the linear regression and ACP model. The casual effects of US dollar and 

S&P 500 stock indices on WTI are time-varying and become stronger after 2008.  
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1. Introduction  

Time-varying parameter models are useful to detect the evolving economic and financial 

systems. Many methods have been proposed and widely applied in empirical studies. One 

popular method may be the so-called time-varying parameter model, where the time-varying 

parameter follows a random walk process (e.g., Kalman, 1960; Sims, 1989; Cogley and 

Sargent, 2005; Primiceri, 2005). Another is the regime-switching model, where the 

time-varying parameter follows a nonlinear regime-switching process (e.g., Tsay, 1989; 

Hamilton, 1989; Cai, 1994; Hamilton and Susmel, 1994).  

Recently, Lu and Wang (2016) proposed a new, simple time-varying conditional 

parameter model, i.e., the autoregressive conditional parameter (ACP) model. It’s convenient 

to identify, test, and estimate the ACP model. For example, the orders of ACP model can be 

easily identified using the autocorrelation function (ACF) and partial autocorrelation function 
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(PACF). The empirical results showed that the ACP model outperforms the traditional linear 

regression, and the presence of ACP effect was found. But the explanatory variables in ACP 

model are assumed to be identical independent distributed (i.i.d.), which may not hold in the 

empirical studies.  

Meanwhile, heteroskedasticity or ARCH effect has been widely found in economic and 

financial time series (for instances, Engle, 1982; Bollerslev, 1986; Nelson, 1991; Bollerslev et 

al., 1992; Bollerslev and Engle, 1993; Ederington and Guan, 2013; Engle and Sheppard, 2001; 

Engle, 2002). Engle (1982) found that quarterly British consumer price index presented a 

significant ARCH effect. Using daily returns for the value-weighted market index from the 

CRSP tapes, Nelson (1991) confirmed the existence of ARCH effect. Engle (2002) proposed 

the dynamic conditional correlation (DCC) GARCH model, and the empirical results showed 

some correlations among some financial markets are time-varying. Ederington and Guan 

(2013) applied the EGARCH model of Nelson (1991) for 43 daily financial returns and 

confirmed the presence of ARCH effect.  

The presence of ARCH effect may impact the efficiency of the estimate, the power of a 

test, and the performance of a model (e.g., White, 1980; Dufour and Taamouti, 2010). 

Particularly, the ACP model of Lu and Wang (2016) is not applicable when heteroskedastic 

explanatory variables are used, because the i.i.d assumption of explanatory variables 

is violated. Therefore, this paper extends the ACP model to allow for heteroskedastic 

regressors by assuming the explanatory variables to be a multivariate GARCH process.  

The model is applied to study time-varying effects of daily US dollar index and S&P 500 

stock market on WTI crude oil price. Lots of empirical studies have examined their relations 

since Hamilton (1983) showed crude oil price shock was a factor in the US recession. But the 

empirical findings were complex and sometimes contradictory. For example, in the relations 

between crude oil price and US dollar exchange rate, some researchers found that the 

exchange rate impacted oil prices (e.g., Pindyck and Rotemberg, 1991; Sadorsky, 2000; 

Akram, 2009). But some showed no significant effect of US dollar on crude oil price (e.g., 

Norden, 1998; Zhang et al., 2008). Time-varying effect of US dollar on crude oil has also 

been found (e.g., Harris, 1995; Wu, Chung, and Chang, 2012). In the causal relations between 

crude oil and stock markets, Ciner (2001) found significant nonlinear Granger causality from 

crude oil futures returns to S&P 500 index returns, and stock index returns also affect crude 

oil futures. Hammoudeh and Li (2005) suggested that there is a negative bidirectional 

dynamic relationship between crude oil price growth and the world capital market. On the 

contrary, some studies showed that that there is no significant relationship between oil shocks 

and stock markets (e.g., Al Janabi et al., 2010; Apergis and Miller, 2009; Henriques and 

Sadorsky, 2008). Recently, many papers have examined time-varying relationship between oil 

prices and stock returns (e.g., Chen, 2010; Chang and Yu, 2013; Sim and Zhou, 2015; 

Inchauspe et al., 2015; Kang et al., 2015), and the evidences of time-varying relation have 

been found.  



The rest of the paper is organized as follows. In section 2, the ACP model with 

heteroskedastic regressors (i.e., ACP-H model) is introduced, and the model identification and 

estimation are examined. In the section 3, the model is used to examine time-varying effects 

of daily US dollar index and S&P 500 stock market on WTI crude oil price. The linear 

regression and ACP model are also applied. The in-sample and out-of-sample performances 

are compared. Section 4 concludes.   

 

2. The autoregressive conditional parameter model with heteroskedastic regressor  

 

Assuming that the vector of explanatory variables is i.i.d. with zero mean and positive 

definite covariance matrix, Lu and Wang (2016) proposed an ACP model.  

y� = c� + x�
′b� + e�, e�|I���

� ~F(0, δ�)																																																					

θ� = Ω + ∑ A�	z���
�
��� + ∑ B�	θ���

�
��� ,																																																						

where, δ�
′ = �γ

�
′ ,φ′�, θ�

′ = �c�, b�
′ , γ

�
′ �, and		z�

′ = �y�, V�
��y�x�′, z�,�′�

     (1) 

where, the error e� is independent and follows the distribution F with zero-mean. δ� =

(γ
�
′ ,φ′) is a vector of time-varying conditional parameters in the error distribution, where γ

�
 

is the time-varying part and φ is the constant one. x� = (x�,�, … , x�,�)′ is the vector of 

explanatory variables with mean zero and positive definite covariance matrix V�, and it’s also 

independent from e�.	θ�′ = (c�, b�
′ , γ

�
′) is a K*1 time-varying conditional parameter vector, 

which is conditioned on past information. K is the dimension of θ�. c� is the conditional 

intercept, and b� is the conditional coefficient vector, so (c�, b�
′ ) is the vector of conditional 

parameters in the mean equation. z� = �y�, V�
��y�x�

′ , z�,�
′ �′ = (z� ,�′, z�,�′)′ meets the following 

condition.   

E�z� ,�
′ �I����= E�(y�, V�

��y�x�
′)�I����= (c�, b�

′ )

E�z�,��I���
� �= γ

�
																																																							

           (2) 

where, I��� = (x���, x���, … ; e���, e���, … ) is the information set available at time t-1, and 

I���
� = (I���, x�). Hence, z�  can be viewed as the sample observation of time-varying 

parameter vector θ�. When γ
�
 is the widely-used conditional variance h�, z�,� = e�

�. Finally, 

Ω is a K × 1 parameter vector, and A� and B� are the K × K parameter matrices, which 

are usually assumed to be diagonal so that the curses of dimensionality can be avoided.  

However, the presence of ARCH effect in explanatory variable violates the i.i.d. 

assumption and may affect the performance of ACP model substantially. A direct effect is that 

z� in the ACP model (1) does not meet the condition (2). Because c� ∈ I��� and x� is 

independent from I���, the conditional expectation of V�
��y�x� is  

E(V�
��y�x�|I���)= V�

��E�x�(c� + x�
′b� + e�)�I����= V�

��E�x�x�
′b��I����= V�

��H�b�   (3) 

H� = E�x�x�
′�I���� is the conditional covariance matrix of x�, which is not constant when the 



ARCH effect exists in x�. Thus, E(V�
��y�x�|I���)= b� does not hold.  

A new process z�  satisfying the condition (2) should be defined when explanatory 

variables present ARH effects. This paper supposes that γ
�
 is the conditional variance h�. 

Assume that x�  is an independent vector with mean zero and time-varying conditional 

covariance matrix H�, i.e., E(x�|I���)= 0 and E�x�x�
′�I����= H�. Then, z� is defined as  

 z� = �y�, z�,�
′ , e�

��
′
, where	z�,� = H�

��y�x�	and	H� = E�x�x�
′�I����      (4) 

The conditional expectation of z�,� is  

E�z�,��I����= E�H�
��x��x�

′b� + e���I����= E�H�
��x�x�

′b��I����= b�    (5) 

because E(x�e�|I���)= 0	and	E�x�x�
′�I����= H�. Similar to Lu and Wang (2016),  

E(y�|I���)= c�, E(e�
��I���

� )= h�                  (6) 

Therefore, z� defined by (4) satisfies the condition (2).  

Then, the ACP model with heteroskedastic regressors is defined as  

y� = c� + x�
′b� + e�, e�|I���

� ~F(0, δ�)																																																					

θ� = Ω + ∑ A�	z���
�
��� + ∑ B�	θ���

�
��� ,																																																						

where, δ�
′ = �γ

�
′ ,φ′�, θ�

′ = �c�, b�
′ , γ

�
′ �, and		z�

′ = �y�, H�
��y�x�′, z�,�′�

      (7) 

where, H� is the conditional covariance matrix of x� and can be estimated by a DCC 

GARCH model. When x� is univariate, H� is the conditional variance of x� and can be 

estimated by a GARCH model.  

Furthermore, if A� and B�  are assumed to be block diagonal, and e�  is normal 

distributed, the ACP-H model can be rewritten as  

y� = c� + x�
′b� + e�,			e�|I���

� ~N(0, h�)		

c� = ω� + ∑ β
�,�

	c���
�
��� + ∑ α�,�	y���

�
���

																																																

b� = Ω� + ∑ B�
�	b���

�
��� + ∑ Α�

�	z� ,���
��

��� , where	z� ,�
� = H�

��y�x�	

h� = α� + ∑ β
�
h���

�
��� + ∑ α�e���

��
��� 																																																							

    (8) 

In model (8), the interactions between c�, b� and h� are ignored. When the number of 

explanatory variables is very large, there may be the ‘curses of dimensionality' problem, so 

A�
� and B�

� can also be assumed to be diagonal in the empirical studies.  

The conditional covariance matrix H� is estimated before the ACP-H model is built. 

When x� is univariate, H� is its conditional variance. Then, a GARCH model can be applied 

for x�, and z� ,�
�  in (8) is estimate by  

z� ,�
� = σ�

��y�x�,                   (9) 

σ�
� is the conditional variance of x�, which is estimated by a GARCH model. When x� is 

multivariate, a multivariate GARCH model can be applied. This paper uses the DCC GARCH 

model of Engle (2002).  



x�|I���~N(0,D�R�D�)																																																													

D�
� = diag{ω�} + diag{κ�} ∘ x���x���

′ + diag{λ�} ∘ D���
� ,

	ε� = D�
��x�																																																																																	

Q� = S ∘ �ιι′ − A − B�+ A ∘ ε���ε���
′ + B ∘ Q���											

R� = diag{Q�}
��Q�	diag{Q�}																																															

          (10) 

where, I� is the information available at time t, N is the normal distribution, and H� =

D�R�D� is the conditional covariance matrix of x�. When the explanatory variables are 

mutually independent, the estimation of H� is very simple. A GARCH model (e.g., Bollerslev, 

1986) can be applied for each explanatory variable, and H� can be estimated by  

H� = �

σ�,�
� ⋯ 0

⋮ ⋱ ⋮
0 ⋯ σ�,�

�
�                      (11) 

where, σ�,�
�  is the conditional variance of x�,� and is estimated by a GARCH model.  

The identification of ACP-H model is the same as that of Lu and Wang (2016) or ARMA 

process. The autocorrelation and partial autocorrelation functions for each element of z� are 

calculated. Then, the characters of theoretical ACF and PACF for stationary ARMA process 

are used to identify the lag order (e.g., Wei, 1989; Lu and Wang, 2016). Furthermore, the 

ACP(1,1)-H model may be preferable in the empirical study if the sample ACFs and PACFs 

decay to zero at a large lag, which is similar to the popular GARCH(1,1) process.  

Maximum likelihood estimation (MLE) is applied for the ACP-H model (8). Let L be the 

average of log-likelihood function and l� be the log-likelihood function of t-th observation 

apart from the constant.  

L =
1

T
�l�

�

���

 

l� = −
�

�
log(h�)−

��
�

���
                          (12) 

The ML estimate can be obtained by maximizing L over the parameters.  

Under certain conditions, the ML estimate exits and asymptotically follows a normal 

distribution (e.g., Greene, 2003; Crowder, 1976). When the error is not normal distributed, the 

quasi-maximum likelihood estimation (QMLE) can be applied (Bollerslev and Wooldridge, 

1992). It’s very complex to identify these conditions, so this paper assumes that the ML 

estimator exits and is asymptotically normal distributed.  

 

3. Empirical study 

 

In this section, the ACP-H model is applied to study time-varying effects of US dollar 

index and S&P 500 stock index on WTI crude oil price. For the purpose of comparison, the 

traditional linear regression and the ACP model of Lu and Wang (2016) are also built. The 



in-sample and out-of-sample performances

The daily returns of WTI crude oil price

index (spx) are used in the paper

where P� is the closing price. 

has 7933 observations. The data before December 30, 2012 is used for model estimation, and 

the remaining data (692 observations)
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Fig.s 1-3 are the returns of WTI crude oil price, US dollar index, and S&P500 stock index. 

Each return exhibits the volatility clustering

the WTI return (Fig. 1) presents large changes when

sample performances are examined.  

he daily returns of WTI crude oil price (wti), US dollar index (dollar) and S&P 500 stock 

are used in the paper. The return is the log-return r� = 100 ∗ (ln

is the closing price. The whole sample is April 5, 1983 - September

he data before December 30, 2012 is used for model estimation, and 

observations) is used to check the out-sample performance

Fig. 1. The return of WTI crude oil price  

Fig. 2. The return of US dollar index  

Fig. 3. The return of S&P 500 stock index  

3 are the returns of WTI crude oil price, US dollar index, and S&P500 stock index. 

he volatility clustering, which indicates the ARCH effect. 

1) presents large changes when the 1990 Gulf Crisis and

and S&P 500 stock 

ln(P�)− ln(P���)), 

September 30, 2015, and 

he data before December 30, 2012 is used for model estimation, and 

sample performance.  

 

 

 

3 are the returns of WTI crude oil price, US dollar index, and S&P500 stock index. 

the ARCH effect. For instance, 

Crisis and the 2008 



Global Economic Crisis happened. Outliers can also be found2. Take the WTI return as an 

example, the sample mean and standard deviation are 0.01 and 2.40. Its value at Jan 17, 1991 

is -40, which is smaller than 4 standard deviations, so it is an outlier. Similarly, we find the 

presences of outliers in US dollar and S&P 500 stock returns.  

Because the outliers may affect the estimate and performance of a model, each return is 

cut off by four times the standard deviation apart from the mean. Then, each return is 

standardized by r� − r̅, because the explanatory variables in ACP model should be zero-mean. 

r̅ is the sample mean of r�.  

Table 1 reports the Augmented Dickey-Fuller (ADF) unit root test and Engle's (1982) 

ARCH test. The ADF test statistics for wti, dollar and spx are -90.93, -89.48, and -91.62, 

which are all significant at 1% level. The ADF test rejects the unit root null hypothesis, so 

each process is stationary. The ARCH test shows that each process presents the ARCH effect 

significantly, so the ACP-H model may be more suitable. The presence of ARCH effect in wti 

return indicates that the error variance follows a GARCH model. Furthermore, the sample 

ACF, PACF and Ljung-Box Q statistics show that each return has non-significant or very 

limited autocorrelations3, so the vector of explanatory variables is assumed to be independent 

in our empirical research 4 . In addition, the dependent variable wti has very weak 

autocorrelations5, so the time-varying intercept in ACP and ACP-H models is assumed to be 

constant, i.e., c� = c.  

 

Table 1. The Augmented Dickey-Fuller (ADF) and ARCH tests  

Tests The ADF test The ARCH test 

wti -90.93 

[0.0001] 

242.01 

[0.0000] 

dollar -89.48 

[0.0001] 

49.82 

[0.0000] 

spx -91.62 

[0.0001] 

403.92 

[0.0000] 

Notes: The value in [ ] is the P-value, and the lag of Engle ARCH test is 5.   

 

The sample ACF and PACF of z�  are used for the model identification. Denote 

z� = H�
��y�x� = (zwd�, zws�)′ in the ACP-H model, where x� = (dollar�, spx�)′ and H� is 

estimated by the DCC-GARCH model of Engle (2002)6. Let z� = (zwd0�, zws0�)′ in the 
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4 When there are strong autocorrelations, the ACP model may be affected substantially. Therefore, the ARMA 
model can be applied for explanatory variable to remove the autocorrelations before the ACP model is applied. The 
limited autocorrelations would not affect our empirical results, so they are ignored for simplicity in this paper.  
5 The absolute values of sample ACF and PACF for wti are smaller than 0.039, so the autocorrelation is very weak. 
Furthermore, the autocorrelation is not significant after the GARCH (1,1) model is applied, so the weak 
autocorrelation induced by the ARCH effect can be ignored.  
6
 The estimation of Engle’s (2002) DCC-GARCH model applies the “ccgarch” R package. The estimates are not 



ACP model, where V�
�� is estimated by the sample covariance matrix of x�.  

Fig. 4 shows the correlograms of zwd� and zws�, and Fig. 5 shows that of zwd0� and 

zws0�. Significant autocorrelations are found, which indicates that the coefficients of dollar 

and spx may be time-varying or present ACP effects. The sample ACFs and PACFs decay to 

zero for large lags, so the order n in ACP(0,n) models may be large and there may be too 

many parameters. Take zwd� for an example, the Q statistics shows that it has significant 

autocorrelations, its sample ACFs and PACFs are not zero even after the lag 10 (see the left 

part in Fig. 4), and the sample ACF and PACF at lag 13 are 0.022 and 0.017, which are still 

significant (see “AC” in the left part of Fig. 4). Therefore, we choose the order (0,13) for 

dollar in the ACP(0,n)-H model. Similarly, we choose the order (0,11) for spx in the 

ACP(0,n)-H model by the sample ACFs and PACFs (see the right part in Fig. 4). From Fig. 5, 

a larger lag n may be selected for each return, as the sample ACFs and PACFs usually decay 

to zero at a larger lag. For simplicity, we choose the same lag n in the ACP model as that in 

ACP-H model for each regressor7. Furthermore, it’s shown that the sample ACF and PACF 

decay slowly. Therefore, the ACP(1,1) and ACP(1,1)-H models are applied, as they not only 

allow for the slow decay but also reduce the number of parameters. In summary, the selected 

orders for ACP and ACP-H models are shown in Table 2.  

 

 

Fig. 4. Correlograms of zwd� and zws� 

Notes: “AC” and “PAC” are the sample ACFs and PACFs, and “Q-stat” is the Ljung-Box Q statistics 

and “Prob” is the corresponding p-value.   

 

                                                                                                                                                                               
shown in the paper, but they can be obtained upon request.  
7
 A larger lag n can be selected from the sample ACFs and PACFs, but it only yields a limited improvements of the 

ACP(0,n) model. Therefore, we do not consider other orders for the ACP(0,n) model.  



 

Fig. 5. Correlograms of zwd0� and zws0� 

 

Table 2. Orders of the ACP-H and ACP models for dollar and spx  

Explanatory variables dollar spx 

Lag orders (0,13) and (1,1) (0,11) and (1,1) 

 

Table 3 reports the estimates of linear regression, ACP(1,1) and ACP(1,1)-H models8. The 

first column is the linear regression. The coefficient of dollar is -0.240192, which is 

significant at 5% level, so dollar has a negative effect on wti. The coefficient of spx is 

0.124348 and is also significant, which implies that spx has a positive effect on wti. Therefore, 

the US dollar index has a negative effect on WTI crude oil price, but the S&P 500 stock index 

has a positive effect on WTI crude oil price. Besides, the ARCH effect is found from the 

estimates of e���
�  and h���.  

The estimates of ACP(1,1) and ACP(1,1)-H models are shown in the 2nd and 3rd columns 

in Table 3. b�,� and b�,� are the time-varying parameter of dollar and spx, respectively. 

From the estimates of ACP(1,1)-H model, the estimated parameters of b�,��� ∗ dollar and 

z�,��� ∗ dollar are 0.9946 and 0.0029. They are all significant at 5% level, which indicates 

the presentence of ACP effect, and the sum is close to 1, which means that time-varying 

parameter b�,� is strongly persistent. From the estimates of b�,��� ∗ spx and z�,��� ∗ spx, a 

strong ACP effect is found and the persistent time-varying parameter b�,� is shown, too. 

Furthermore, the mean values of b�,� and b�,� are -0.2237 and 0.00543 in turn. Therefore, 

the US dollar has a negative effect on wti, and spx has a positive effect, which is similar to 

that from the linear regression. Similarly, we draw similar conclusions from the estimates of 

ACP(1,1) model (the 2nd column in Table 3). Finally, the R� values of three models indicate 

that ACP(1,1)-H model has the best performance, and ACP(1,1) model also outperforms the 

linear regression.   

 

Table 3. Estimates of linear regression, ACP(1,1) and ACP(1,1)-H models  
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 The program for ACP(1,1) and ACP(1,1)-H models is written in the GAUSS  language and shown in the appendix.  



Variables Linear regression ACP(1,1) ACP(1,1)-H 

c 
0.0113 

[0.5956] 

0.0076 

[0.3918] 

0.0101  

[0.5523] 

dollar 
-0.2402 

[-8.0799] 

-0.0002 

[-0.6667] 

0.0001  

[0.5000] 

z�,��� ∗ dollar -- 
0.0020 

[2.8571] 

0.0077  

[4.8125] 

b�,��� ∗ dollar -- 
0.9941 

[523.21] 

0.9893 

[380.50] 

spx 
0.1243 

[6.8965] 

0.0000 

[--] 

-0.0001 

 [-0.5000] 

z�,��� ∗ spx -- 
0.0013 

[6.5000] 

0.0033 

[3.6667] 

b�,��� ∗ spx -- 
0.9978 

[1995.60] 

0.9955  

[765.76] 

cons 
0.0159 

[6.3317] 

0.0198 

[4.1250] 

0.0194 

[4.1276] 

e���
�  

0.0572 

[19.771] 

0.0668 

[13.360] 

0.0655  

[13.100] 

h��� 
0.9423 

[345.32] 

0.9320 

[198.40] 

0.9337  

[198.66] 

R2 0.0120  0.0492 0.0583 

Notes: “c” is the intercept in mean equation, "cons" is that in variance equation, and the value in [ ] is 

the t-value. “--” denotes N.A., and R2 is the R-squared statistics.  

 

For the ACP(0,n) and ACP(0,n)-H models, they include too many parameters and are 

usually inferior to the ACP(1,1)-H model in our empirical research, so their estimates are not 

shown in the paper. But their performances are examined below. Similarly, the linear 

regression, ACP and ACP-H models with one regressor are built to check the performances, 

but the estimates are not shown, too.  

Table 4 shows the root-mean-square error (RMSE), mean absolute deviation (MAD) and 

R� of the models. From the statistics for in-sample fit, the ACP(1,1)-H model has the best 

performance, because its R� is the largest and its RMSE and MAD values are the smallest. 

It’s also shown that the ACP(0,n)-H model outperforms the corresponding ACP(0,n) model. 

Furthermore, the ACP-H and ACP models are obviously better than the linear regression. 

Take the R� statistics for an instance. The R� of multiple linear regression for the in-sample 

period is only 0.0120, but these of ACP(0,n), ACP(0,n)-H, ACP(1,1) and ACP(1,1)-H models 

with two explanatory variables are 0.0433, 0.0527, 0.0492 and 0.0583, which are higher than 

that of multiple linear regression. Furthermore, the ACP-H model has a better performance 

than ACP model. From the out-of-sample test statistics, we can draw the similar conclusions. 

In summary, the ACP(1,1)-H model is almost the best, and the ACP(0,n)-H model usually has 



an edge over the corresponding 

 

Table 4. The performances of 

Regressors Models 

dollar 

Linear regression

ACP(0,n)

ACP(0,n)-

ACP(1,1)

ACP(1,1)-

spx 

Linear regression

ACP(0,n)

ACP(0,n)-

ACP(1,1)

ACP(1,1)-

both 

Linear regression

ACP(0,n)

ACP(0,n)-

ACP(1,1)

ACP(1,1)-

Fig. 6. Time-varying effects 

Note: “b_dollar” is the time-varying coefficient of 

they are estimated by the ACP(1,1)

 

Finally, the ACP(1,1)-H model

model in Table 3) is used to examine time

500 stock index on WTI crude oil price. The 

shown in Fig. 6. The time-varying coefficient of dollar is usually smaller than 0

in Fig. 6), which implies that US dollar index usually depresses WTI crude oil price

the corresponding ACP(0,n) model.  

erformances of linear regression, ACP model and ACP-H model

In-sample  Out-

RMSE MAD R2 RMSE MAD

Linear regression 2.3027 1.6272 0.0077 1.9571 1.3541

ACP(0,n) 2.2818 1.6139 0.0257 1.9354 1.3413

-H 2.2802 1.6144 0.0271 1.9319 1.3407

ACP(1,1) 2.2772 1.6044 0.0279 1.9501 1.3533

-H 2.2739 1.6021 0.0308 1.9516 1.3610

Linear regression 2.3070 1.6300 0.0041 1.9500 1.3459

ACP(0,n) 2.2800 1.6087 0.0272 1.9340 1.3384

-H 2.2688 1.6041 0.0367 1.9395 1.3327

ACP(1,1) 2.2589 1.5920 0.0435 1.9189 1.3191

-H 2.2579 1.5951 0.0444 1.9059 1.3107

Linear regression 2.2978 1.6210 0.0120 1.9328 1.3332

ACP(0,n) 2.2610 1.5974 0.0433 1.9066 1.3206

-H 2.2499 1.5933 0.0527 1.9001 1.3065

ACP(1,1) 2.2521 1.5856 0.0492 1.9043 1.3051

-H 2.2413 1.5818 0.0583 1.8736 1.2842

 

effects of US dollar and S&P 500 stock on crude oil price 

varying coefficient of US dollar, “b_spx” is that of S&P 500 stock

the ACP(1,1)-H model.   

H model with two explanatory variables (see the 

to examine time-varying causal effects of US dollar index and S&P 

500 stock index on WTI crude oil price. The time-varying coefficients of dollar and spx are 

varying coefficient of dollar is usually smaller than 0

, which implies that US dollar index usually depresses WTI crude oil price

H model  

-of-sample 

MAD R2 

1.3541 0.0138 

1.3413 0.0355 

1.3407 0.0391 

1.3533 0.0209 

1.3610 0.0193 

1.3459 0.0209 

1.3384 0.0370 

1.3327 0.0315 

1.3191 0.0519 

1.3107 0.0647 

1.3332 0.0382 

1.3206 0.0641 

1.3065 0.0704 

1.3051 0.0664 

1.2842 0.0974 

 

on crude oil price  

S&P 500 stock, and 

(see the ACP(1,1)-H 

varying causal effects of US dollar index and S&P 

coefficients of dollar and spx are 

varying coefficient of dollar is usually smaller than 0 (see “b_dollar” 

, which implies that US dollar index usually depresses WTI crude oil price. But 



sometimes it is larger than 0, which indicates a positive effect of US dollar index on WTI 

crude oil price. For instances, in the subperiods of November 22, 1989 - July 31, 1990; 

August 20, 1991 - January 4, 1993; January 3, 1994 - July 11, 1994, and September 22, 2000 - 

June 27, 2001, it is usually positive. In addition, it’s negative after March 2003 and becomes 

much smaller after December 2007. Thus, the US dollar index has a stronger negative impact 

on WTI crude oil after December 2007 averagely, which means that US monetary policy 

played a more important role in global crude oil pricing.  

Meanwhile, the time-varying coefficient of spx is usually larger than 0 (see “b_spx” in Fig. 

6), which means that the S&P 500 stock index has a positive effect on WTI crude oil price on 

the average. But it has a negative influence on WTI crude oil price in some subperiods (e.g., 

August 3, 1990 - June 27, 1991; September 21, 1993 - August 31, 1995; February 10, 2003 - 

February 27, 2004). Furthermore, the time-varying coefficient of spx is usually larger than 

0.25 and rises to 0.918 at August 29, 2011, so the S&P 500 stock index has a stronger effect 

on WTI crude oil market after early 2009.  

In a word, our empirical study shows the evidences of time-varying effects of US dollar 

and stock market on WTI crude oil price. The findings may be helpful for understanding the 

evolving crude oil pricing and improving the prediction accuracy.  

 

4. Conclusion 

 

To do with heteroskedasticity or ARCH effect in financial time series, this paper extends 

the autoregressive conditional parameter (ACP) model of (Lu and Wang, 2015) to the ACP 

model with heteroskedastic regressors. The conditional covariance matrix of explanatory 

variables is firstly estimated by a dynamic conditional correlation (DCC) - GARCH model. 

Then, the ACP-H model can be built and maximum likelihood estimation is used to solve the 

parameters.   

The ACP-H, ACP and linear regression models are used to examine time-varying effects 

of US dollar index and S&P 500 stock index on WTI crude oil price. The data of April 5, 

1983 - December 30, 2012 is used to estimate the models, and that of January 3, 2013 - 

September 30, 2015 is used to check the out-of-sample performances. From the 

root-mean-square error (RMSE), mean absolute deviation (MAD) and R�, the ACP-H model 

improves the in-sample and out-of-sample performances substantially. For examples, the 

in-sample R� of ACP(1,1)-H model with two explanatory variables is 0.0583, which is the 

largest, and the out-of-sample one is 0.0974 and is also the largest.  

The empirical results show that the coefficients of US dollar and S&P 500 stock returns in 

the ACP-H model change with time significantly, which indicates that their influences on 

WTI crude oil price are time-varying. Both positive and negative effects of US dollar and 



stock market on WTI crude oil price are found, which accommodates the complex findings of 

previous empirical studies. Meanwhile, their influences on crude oil price are enhanced 

substantially after 2008. Specially, the US dollar index has a stronger negative impact on WTI 

crude oil after December 2007, which implies that US monetary policy played a more 

important role in crude oil pricing thereafter.  
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Appendix (Gauss code for ACP(1,1)-H model)  

 

/* 

**  ACP(1,1) model-garch(1,1) allows explanatory variables to be heteroskedastic.  

**  x(t) is a vector of two elements, which follows the dynamic conditional correlation GARCH model of Engle (2002).  

**  _cml_Algorithm  -  scalar, indicator for optimization method:  

**                  = 1,   BFGS (Broyden, Fletcher, Goldfarb, Shanno) 

**                  = 2,   DFP (Davidon, Fletcher, Powell) 

**                  = 3,   NEWTON (Newton-Raphson) 

**                  = 4,   BHHH 

*/ 

 

new; 

 

load data[7934,6]=e:\program\data\wtispxdollar_acp_dccgarch.txt;  

@ date, wti,spx,dollar,Zspx_dcc Zdollar_dcc; @  

@ In the ACP-H model, the DCC-GARCH model is used to estimate dynamic conditional covariance of x(t) @  

 

tim=data[2:rows(data),1]; 

r0=data[2:rows(data),2:6]; 

N0=rows(r0); @ length of data @ 

 

/* 

a1=acf(r0[.,1],20,0); 

a2=acf(r0[.,2],20,0); 

a3=acf(r0[.,3],20,0); 

print a1~a2~a3; 

pa1=pacf(r0[.,1],20,0); 

print pa1; 

*/ 

@ ACP(1,1) model. The error follows a GARCH(1,1) process @  

p=1; 

q=1; 

garchp=1;garchq=1; 

 

s=1; @[s:e] is the in-sample period@ 

e=7241;  

r=r0[s:e,.]; 

N=rows(r); 

 

/* The process yt and xt are zero-mean */  

r1=r[.,1]; @ r1=r1-meanc(r1); @ 

r2=r[.,2]; @ r2=r2-meanc(r2); @ 



r3=r[.,3]; @ r3=r3-meanc(r3); @ 

z1=r[.,4]; 

z2=r[.,5]; 

 

x=r1~r2~r3;  @ x is the input data used in MLE @ 

 

library cml,pgraph; 

#include cml.ext; 

#include pgraph.ext; 

cmlset; 

graphset; 

 

 /* The initial values and constraints of parameters.  */ 

   

  numx0=2; @ number of explanatory variables @ 

  @ the number of paramters in the mean equation: [ 1+numx*(p+q+1)+ (1+garchp+garchq) ]  @ 

  @ 1+numx0*(p+q+1) is the number of parameter in mean equation @ 

  @ (1+garchp+garchq) is the number of parameter in garch(p,q) equation @  

  nm0=numx0*(p+q+1); @ number of parameter in the ACP equation @ 

   

  @ get the initial value of params: @  

 

     bx1=olsqr(x[.,1],x[.,2]); 

     bx2=olsqr(x[.,1],x[.,3]); 

 

        @ b0=zeros(1+numx0*(p+q+1),1)|0.05*stdc(x[.,1])^2|0.05*ones(garchq,1)|0.9; b0[1]=bxar; @ 

          

         b0=0|(0.05*bx1)|0.01|0.95|(0.05*bx2)|0.01|0.95|0.05*stdc(x[.,1])^2|0.05|0.9;   

        @ b0=0|0.05*bx1|0.05|0.9|0.05*bx2|0.05|0.9|0.05*stdc(x[.,1])^2|0.05|0.9; @ 

         

        _ww_ = { -1e256 1e256 }; 

        _cml_Bounds=ones(1+nm0+garchp+garchq+1,2).*_ww_;  

        _cml_Bounds[3:p+q+2,1]=-0.99999*ones(p+q,1); 

        _cml_Bounds[3:p+q+2,2]=0.99999*ones(p+q,1); 

        

        _cml_Bounds[p+q+4:nm0+1,1]=-0.99999*ones(p+q,1); 

        _cml_Bounds[p+q+4:nm0+1,2]=0.99999*ones(p+q,1); 

         

        @ _cml_Bounds[2,1]=(1e-6)*ones(1,1); _cml_Bounds[2,2]=0.99999*ones(1,1);@   @constraints of ar(1) 

parameter@ 

 

           @nonegative parameter in variance equation @ 

        _cml_Bounds[2+nm0:1+nm0+garchp+garchq+1,1]=(1e-6)*ones(garchq+garchp+1,1);       

        _cml_Bounds[3+nm0:1+nm0+garchp+garchq+1,2]=0.99999*ones(garchq+garchp,1);     



          

        _cml_Algorithm=4; 

        _cm_DirTol=1e-9; 

        _cml_MaxIters=3000; 

        format /rd 13,8; 

    

        {b,f,g,h,retcode}=cmlPrt(cml(x,0,&acpll,b0)); 

 

print b h; 

 

/* 

calculate and output the dummy variable of out-of-sample, error, acp  

*/  

 

   x0=r0[.,1]~r0[.,2]~r0[.,3]; 

   z10=r0[.,4]; 

   z20=r0[.,5]; 

   N0=rows(x0); 

   u0=zeros(N0,1); 

   h0=zeros(N0,1); 

   acp0=zeros(N0,2); 

   duminsamp=zeros(N,1)|ones(N0-N,1);  

 

   acp0[1,1]=olsqr(x0[.,1],x0[.,2]); 

   acp0[1,2]=olsqr(x0[.,1],x0[.,3]); 

   u0[1]=x0[1,1]-b[1]-acp0[1,1]*x0[1,2]-acp0[1,2]*x0[1,3]; 

 

 for i (2,N0,1); 

            acp0[i,1]=b[2]+b[3]*z10[i-1]+b[4]*acp0[i-1,1]; 

            acp0[i,2]=b[5]+b[6]*z20[i-1]+b[7]*acp0[i-1,2]; 

            u0[i]=x0[i,1]-b[1]-acp0[i,1]*x0[i,2]-acp0[i,2]*x0[i,3];  

        endfor; 

    

output file=e:\program\data\output_acp11_2regressor.txt reset; 

print  duminsamp~u0~acp0;  

end output; 

 

/*  

   in the log-likelihood functuon acpll, p=q=garchp=garchq=1.  

*/  

 

proc acpll(b,data);  @ ACP(1,1)_garch_ normal distribution @ 

   local T,acp,numx,u,utemp,u2temp,ugarch,i,h,htemp,he,k,mx,Tg,ll; 

   T=rows(data); 



   numx=cols(data)-1; @ the number of independent vars @ 

   u=zeros(T,1); 

   h=zeros(T,1); 

   acp=zeros(T,2); 

 

   acp[1,1]=olsqr(data[.,1],data[.,2]); 

   acp[1,2]=olsqr(data[.,1],data[.,3]); 

   u[1]=data[1,1]-b[1]-acp[1,1]*data[1,2]-acp[1,2]*data[1,3]; 

          

   for i (2,T,1); 

            acp[i,1]=b[2]+b[3]*z1[i-1]+b[4]*acp[i-1,1]; 

            acp[i,2]=b[5]+b[6]*z2[i-1]+b[7]*acp[i-1,2]; 

            u[i]=data[i,1]-b[1]-acp[i,1]*data[i,2]-acp[i,2]*data[i,3];  

        endfor; 

  

   /*   

    **  h: Conditional variance vector:  

    **  u : the residual   

    **  calculate the conditional variance vector: 

    **  alpha- garch(garchp,garchq) : b[p+q+numx+1: p+q+numx+1+garchp+garchq] 

    */ 

       mx=maxc(garchp|garchq); 

       ugarch= u[1:rows(u)]; @ the residual uesd in Garch model:delete the first p value @ 

       Tg=T;    

       k=numx*(p+q+1)+2;  @ b[k:rows(b)] is the parameter vector in variance equation @ 

 

    if garchp==0 and garchq==0;   @ constant varince @  

         he=b[k]*ones(Tg,1); 

 

    elseif  garchp==0 and garchq>=1;   @ arch( garchq ) model @ 

          u2temp=(stdc(ugarch)^2)*ones(mx,1)|( ugarch^2 ); 

          htemp=(stdc(ugarch)^2)*ones(mx+Tg,1);  

          for i (1,Tg,1); 

             htemp[i+mx]=b[k]+ (u2temp[i+mx-1:i-garchq])'*b[k+1:k+garchq]; 

          endfor; 

           he=htemp[mx+1:(mx+Tg)];  

 

    elseif  garchp>=1 and garchq==0;    /* garch model */ 

          htemp=(stdc(ugarch)^2)*ones(mx+Tg,1);   

          for i (1,Tg,1); 

             htemp[i+mx]=b[k]+ htemp[(i+mx-1):(i+mx-garchp)]'*b[k+1:k+garchp]; 

          endfor; 

          he=htemp[mx+1:mx+Tg];  

 



    elseif  garchp>=1 and garchq>=1;    /* garch model */ 

           htemp=(stdc(ugarch)^2)*ones(mx+Tg,1);   

              @ htemp=(b[4]/(1-b[5]-b[6]))*ones(mx+Tg,1);@  

           u2temp=( (stdc(ugarch)^2 )*ones(mx,1) )|ugarch^2;             

          for i (1,Tg,1); 

            htemp[i+mx]=b[k]+(u2temp[i+mx-1:i+mx-garchq])'*b[k+1:k+garchq]+  

                      htemp[(i+mx-1):(i+mx-garchp)]'*b[k+garchq+1:k+garchq+garchp]; 

          endfor; 

          he=htemp[mx+1:mx+Tg];  

 

    endif; 

 

   ll=-0.5*(ln(2*pi)+ln(he)+(ugarch^2)./he);  

   retp(ll); 

 

endp;  

 


